

Laser Photolysis of Caged Calcium (NP-EGTA)

Author:	J. Langer, C. Kleinhans & C.R. Rose
Institute:	Institut für Neurobiologie
Organization:	Heinrich-Heine-Universität, Düsseldorf, Germany

Description:

Hippocampal slices of P16 mice were stained with the cell-permeant calcium-sensitive dye Fluo-4 AM and additionally loaded with cell permeant NP-caged EGTA AM. This photolabile chelator releases Ca^{2+} upon UV illumination due to its K_d increase from 80 nM to >1 mM. Uncaging of calcium was achieved by the application of brief (500 ms) and focally restricted flashes of UV light (diameter ~1 µm) to astrocytic somata during two-photon-imaging of these cells. The uncaging unit consisted of a DL-355/10 UV-laser, operated by a UGA-40 galvanometric controlling system (Rapp OptoElectronic). This unit was coupled to a custom-built multiphoton laser scanning microscope (based on a Fluoview 300, Olympus; 60x/1.1, NIR Apo, Nikon, water immersion objective), connected to a tuneable Ti:Sa laser (MaiTai, SpectraPhysics).

Setup:

•	Microscope:	Olympus Fluoview 300
•	Objective:	Nikon 60x NIR Apo NA 1.1 water immersion

Rapp OptoElectronic:

•	System:	UGA-40 – point scanning device
•	Light source:	DL-355/10 diode laser

 \Rightarrow Approx. sample spot size: 1 µm

Combined techniques:

- Slice preparation of hippocampus (P16 mice)
- Multiphoton laser scanning microscopy
- Intracellular calcium uncaging
- Calcium imaging

LIGHT Solutions

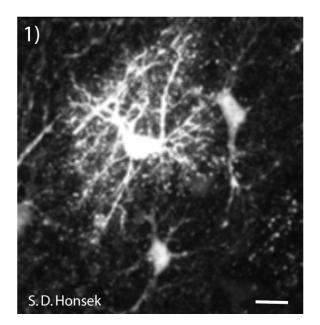


Figure 1: Multi-photon-image of astrocytes in radiatum the stratum of mouse a hippocampus. То specifically identify astrocytes the hippocampal slice in preparation, slices were loaded with the astocyte specific vital dye sulforhodamine 101 (SR 101). Because Fluo-4 fluorescence is very dim at low intracellular baseline calcium levels, a single astrocyte was additionally filled with AlexaFluor 594 to visualize its fine processes. (Scale bar = $60 \mu m$)

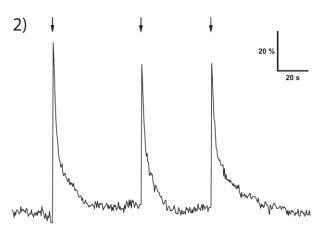


Figure 2: Calcium transients as indicated by changes in fluorescence (Δ F/F0). Uncaging UV flashes (500 ms) were aimed at the soma of the astrocyte.

T +49(0)4103 701890 info@rapp-opto.com www.rapp-opto.com